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1 Introduction

The field of Artificial Intelligence is a broad research area in which there are two
main goals. The first goal is to understand and formalize (human) intelligence,
both on a neurological level as well as a conceptual level. There is a focus on cog-
nitive functions like attention, memory, problem solving and language because
it is not too hard to specify tasks that require one of these functions.

The second goal is to model this knowledge in computers, thereby simulat-
ing intelligent behaviour. This can be done on various scales, from the field of
robotics to computer programs that can perform a small task. A good example
is a speech recognition program, which can translate spoken text to written text.

In this thesis we will focus on the field of Computational Linguistics, and more
specifically on the formalization of natural language. Natural languages play an
important role in the field of Artificial Intelligence. Let us for example consider
the following questions: How do children learn a language? Is there a universal
grammar? Will computers ever be able to understand natural language? All of
these questions require understanding about natural languages, and especially
understanding about the structure behind natural languages.

Humans are very good in speaking, writing and understanding a language,
while even the best computer systems are worse than a child. And if we think
about the way children learn a language, the difference becomes even bigger: a
child can learn any language by observing only correct sentences for a few years.
Nobody is explaining any gramatical rules to children, nor are they correcting
wrong sentences in the first few years of a childs life. Still, from this children
learn to construct valid sentences that they have never heard before.

However, if we try to model this behaviour in computers we will fail to find
any interesting language models. Any self-learning algorithm will require both
positive and negative examples, so in this case it will also need wrong sentences
to be able to distinguish between sentences and non-sentences. If we will use
only correct sentences, the algorithm will just learn that any sentence is correct,
which is obviously not the indended behaviour.

Therefore the idea is that humans already have some kind of built-in Uni-
versal Grammar. This grammar could define the structure of natural languages
in general, and by hearing sentences (together with observing events in the real-
world to find associations) children could fill in the grammar for a specific lan-
guage like English.

The framework that we will use in this thesis is based on the idea of Parsing
as Deduction, which is the idea that humans use a deductive system to parse nat-
ural language. The axioms and rules of inference of this deductive system then
define how language can be used, so could be seen as a definition of the univer-
sal grammar. The learning of a language will then set certain parameters that
represent the specific rules of this language. This deductive system could also be
extended to the semantical level by means of a Curry-Howard interpretation.

In 1958, Lambek published his paper titled The Mathematics of Sentence
Structure. In this paper he formulated the Syntactic Calculus, a calculus for
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modelling the structure of natural languages based on the idea of parsing as de-
duction. The approach that Lambek took with his syntactic calculus is to define
a logical framework for describing the structure of sentences. In this framework
every word is assigned one or more types that define the function of a word
in the sentence. The learning of a natural language like English would in this
case be the process of assigning types to words, which then would provide us a
method to distinguish between sentences and non-sentences. This could be the
start for handling natural languages in a formalized way.

In 1961, Lambek formulated another version of the syntactic calculus: in
(Lambek, 1958), types are assigned to strings, which are then combined by an
associative operation; in (Lambek, 1961), types are assigned to phrases (brack-
eted strings), and the composition operation is non-associative. We refer to these
two versions as L and NL respectively.

As for the theoretical generative power, Kandulski (1988) proved that NL
defines exactly the context-free languages. Pentus (1993b) showed that this also
holds for the associative sytem L. As for the complexity of the derivability prob-
lem, de Groote (1999) showed that for NL this belongs to PTIME; for L, Pentus
(2003) proves that the problem is NP-complete and Savateev (2009) shows that
NP-completeness also holds for the product-free fragment of L.

It is well known that some natural language phenomena require generative ca-
pacity beyond context-free. Several extensions of the syntactic calculus have been
proposed to deal with such phenomena. In this thesis we look at the Lambek-
Grishin calculus LG (Moortgat, 2007, 2009). LG is a symmetric extension of
the nonassociative Lambek calculus NL. In addition to ⊗, \, / (product, left
and right division), LG has dual operations ⊕,;,� (coproduct, left and right
difference). These two families are related by linear distributivity principles.

Melissen (2009) shows that all languages which are the intersection of a
context-free language and the permutation closure of a context-free language
are recognizable in LG. This places the lower bound for LG recognition beyond
LTAG. LTAG is the class of languages generated by (Lexicalized) Tree-Adjoining
Grammars (Joshi and Schabes, 1997), a grammar formalism somewhat similar
to context-free grammars, but the elementary unit of rewriting is a tree rather
than a symbol. The upper bound is still open.

In this thesis we will first formally define the system LG, and show an ex-
ample of an application of the calculus. In the first part we will present results
about the computational complexity of LG and the product-free fragment of
LG. We will show that the derivability problem for both LG and the product-
free fragment of LG is NP-complete, thereby solving two open problems.

The second part of the thesis will describe the implementation of a theorem
prover for LG that has been written along with this thesis. We will give im-
plementational details as well as details and examples about the usage of this
theorem prover. We will conclude by describing some ideas for future work on
this theorem prover.
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2 Lambek-Grishin calculus

We define the formula language of LG as follows.
Let V ar be a set of primitive types, we use lowercase letters to refer to an

element of V ar. Let formulas be constructed using primitive types and the binary
connectives ⊗, /, \, ⊕, � and ; as follows:

A,B ::= p | A⊗B | A/B | B\A | A⊕B | A�B | B ;A

The sets of input and output structures are constructed using formulas and the
binary structural connectives · ⊗ ·, ·/·, ·\·, · ⊕ ·, · � · and ·; · as follows:

(input) X,Y ::= A | X · ⊗ · Y | X · � · P | P ·; ·X

(output) P,Q ::= A | P · ⊕ ·Q | P · / ·X | X · \ · P

The sequents of the calculus are of the form X → P , and as usual we write
`LG X → P to indicate that the sequent X → P is derivable in LG. The
axioms and inference rules are presented in Figure 1, we use the display logic
from (Goré, 1998), but with different symbols for the structural connectives.

It has been proven by Moortgat (2007) that we have Cut admissibility for
LG. This means that we can transform every derivation using the Cut-rule into
a corresponding derivation that is Cut-free. Therefore we will assume that the
Cut-rule is not needed anywhere in a derivation.

2.1 Example

We will now give a short example of a linguistic application that shows how LG
can be used. Let us define the following lexicon of words:

everybody ::= s/(np\s)
teases ::= (np\s)/np
someone ::= (s� s) ; np

Here we have chosen to use np as the primitive type for a noun phrase, and
s as the primitive type for a sentence. A formula A/B (resp. B\A) can be ex-
plained as follows: If this formula is followed (resp. preceded) by an expression
that produces B, then it produces A. The word teases can therefore be explained
as a word that can form a sentence if it is followed by an expression that produces
a noun phrase and preceded by an expression that produces a noun phrase. This
is exactly as one would expect from a transitive verb like teases.

For � and ; it is harder to give a clear explanation in general, but the type
for someone can be explained as: within the context of a sencence, ”someone”
will produce a noun phrase and take over the scope of the sentence. This use will
become clear in the following example.
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p→ p Ax

X → A A→ P
X → P

Cut

Y → X · \ · P
X · ⊗ · Y → P

r

X → P · / · Y
r

X · � ·Q→ P

X → P · ⊕ ·Q dr

P ·; ·X → Q
dr

(a) Display rules

X · ⊗ · Y → P · ⊕ ·Q
X · � ·Q→ P · / · Y

d� /
X · ⊗ · Y → P · ⊕ ·Q
Y · � ·Q→ X · \ · P

d� \

X · ⊗ · Y → P · ⊕ ·Q
P ·; ·X → Q · / · Y

d; /
X · ⊗ · Y → P · ⊕ ·Q
P ·; · Y → X · \ ·Q

d; \

(b) Distributivity rules (Grishin interaction principles)

A · ⊗ ·B → P

A⊗B → P
⊗L X → B · ⊕ ·A

X → B ⊕A ⊕R

X → A · / ·B
X → A/B

/R
B ·; ·A→ P

B ;A→ P
;L

X → B · \ ·A
X → B\A

\R A · � ·B → P

A�B → P
�L

X → A Y → B
X · ⊗ · Y → A⊗B ⊗R

B → P A→ Q

B ⊕A→ P · ⊕ ·Q ⊕L

X → A B → P
B/A→ P · / ·X

/L X → B A→ P
P ·; ·X → A;B

;R

X → A B → P
A\B → X · \ · P

\L X → B A→ P
X · � · P → B �A �R

(c) Logical rules

Fig. 1: The Lambek-Grishin calculus inference rules
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The sentence Everybody teases someone is an ambiguous sentence, for which
there exist two readings. If we use the given formulas for the words and a target
type s, we can construct the following sequent:

(s/(np\s)) · ⊗ · (((np\s)/np) · ⊗ · ((s� s) ; np))→ s

For this sequent there are two different derivations, that correspond to the dif-
ferent readings of the sentence. The derivations are given in Figure 2.

s→ s

s→ s np→ np

np\s→ np\s
\R, \L

np→ np

(np\s)/np→ (np\s) · / · np
/L

((np\s)/np) · ⊗ · np→ np\s
r

s/(np\s)→ s · / · (((np\s)/np) · ⊗ · np)
/L

(s/(np\s)) · ⊗ · (((np\s)/np) · ⊗ · np)→ s
r

s→ s

((s/(np\s)) · ⊗ · (((np\s)/np) · ⊗ · np)) · � · s→ s� s �R

(s/(np\s)) · ⊗ · (((np\s)/np) · ⊗ · np)→ (s� s) · ⊕ · s dr

(s� s) ·; · ((s/(np\s)) · ⊗ · (((np\s)/np) · ⊗ · np))→ s
dr

(s/(np\s)︸ ︷︷ ︸
Everybody

) · ⊗ · (((np\s)/np︸ ︷︷ ︸
teases

) · ⊗ · ((s� s) ; np︸ ︷︷ ︸
someone

))→ s
;L,Gr

(a) ∃x.∀y.((teases x) y)

s→ s

s→ s np→ np

np\s→ np · \ · s
\L

np→ np

(np\s)/np→ (np · \ · s) · / · np
/L

((np\s)/np) · ⊗ · np→ np · \ · s
r

np · ⊗ · (((np\s)/np) · ⊗ · np)→ s
r

(np · ⊗ · (((np\s)/np) · ⊗ · np)) · � · s→ s� s �R

np · ⊗ · (((np\s)/np) · ⊗ · np)→ (s� s) · ⊕ · s dr

(s� s) ·; · (np · ⊗ · (((np\s)/np) · ⊗ · np))→ s
dr

np · ⊗ · (((np\s)/np) · ⊗ · ((s� s) ; np))→ s
;L,Gr

((np\s)/np) · ⊗ · ((s� s) ; np)→ np\s
\R, r

s→ s

s/(np\s)→ s · / · (((np\s)/np) · ⊗ · ((s� s) ; np))
/L

(s/(np\s)︸ ︷︷ ︸
Everybody

) · ⊗ · (((np\s)/np︸ ︷︷ ︸
teases

) · ⊗ · ((s� s) ; np︸ ︷︷ ︸
someone

))→ s
r

(b) ∀y.∃x.((teases x) y)

Fig. 2: Two readings for Everybody teases someone





Part I

Theoretical results
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3 Preliminaries

3.1 Derivation length

We will first show that for every derivable sequent there exists a Cut-free deriva-
tion that is polynomial in the length of the sequent. The length of a sequent
ϕ, denoted as |ϕ|, is defined as the number of connectives used to construct
this sequent. A subscript will be used to indicate that we count only certain
connectives, for example |ϕ|⊗.

Lemma 1. If `LG ϕ there exists a derivation with exactly |ϕ| logical rules.

Proof. If `LG ϕ then there exists a Cut-free derivation for ϕ. Because every
logical rule removes 1 logical connective and there are no rules that introduce
logical connectives, this derivation contains |ϕ| logical rules. ut

Lemma 2. If `LG ϕ there exists a derivation with at most 1
4 |ϕ|

2 Grishin inter-
actions.

Proof. Let us take a closer look at the Grishin interaction principles. First of
all, it is not hard to see that the interactions are irreversible. Also note that
the interactions happen between the families of input connectives {⊗, /, \} and
output connectives {⊕,�,;} and that the Grishin interaction principles are the
only rules of inference that apply on both families. So, on any pair of 1 input
and 1 output connective, at most 1 Grishin interaction principle can be applied.

If `LG ϕ there exists a Cut-free derivation of ϕ. The maximum number of
possible Grishin interactions in 1 Cut-free derivation is reached when a Grishin
interaction is applied on every pair of 1 input and 1 output connective. Thus, the
maximum number of Grishin interactions in 1 Cut-free derivation is |ϕ|{⊗,/,\} ·
|ϕ|{⊕,�,;}.

By definition, |ϕ|{⊗,/,\}+|ϕ|{⊕,�,;} = |ϕ|, so the maximum value of |ϕ|{⊗,/,\}·
|ϕ|{⊕,�,;} is reached when |ϕ|{⊗,/,\} = |ϕ|{⊕,�,;} = |ϕ|

2 . Then the total number
of Grishin interactions in 1 derivation is |ϕ|2 ·

|ϕ|
2 = 1

4 |ϕ|
2, so any Cut-free deriva-

tion of ϕ will contain at most 1
4 |ϕ|

2 Grishin interactions. ut

Lemma 3. If `LG ϕ there exists a Cut-free derivation of length O(|ϕ|3).

Proof. From Lemma 1 and Lemma 2 we know that there exists a derivation with
at most |ϕ| logical rules and 1

4 |ϕ|
2 Grishin interactions. Thus, the derivation

consists of |ϕ| + 1
4 |ϕ|

2 rules, with between each pair of consecutive rules the
display rules. It can be easily seen that at most 2|ϕ| display rules are needed to
display any of the structural parts. So, at most 2|ϕ| ·(|ϕ|+ 1

4 |ϕ|
2) = 2|ϕ|2 + 1

2 |ϕ|
3

derivation steps are needed in the shortest possible Cut-free derivation for this
sequent, and this is in O(|ϕ|3). ut
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3.2 Additional notations

Let us first introduce some additional notations to make the proofs shorter and
easier to read.

Let us call an input structure X which does not contain any structural con-
nectives except for · ⊗ · a ⊗-structure. A ⊗-structure can be seen as a binary
tree with ·⊗ · in the internal nodes and formulas in the leafs. Formally we define
⊗-structures U and V as:

U, V ::= A | U · ⊗ · V

We define X[] and P [] as the input and output structures X and P with a
hole in one of their leafs. Formally:

X[] ::= [] | X[] · ⊗ ·Y | Y · ⊗ ·X[] | X[] · � ·Q | Y · � ·P [] | Q ·; ·X[] | P [] ·; ·Y

P [] ::= [] | P [] · ⊕ ·Q | Q · ⊕ · P [] | P [] · / · Y | Q · / ·X[] | Y · \ · P [] | X[] · \ ·Q

This notation is similar to the one of de Groote (1999) but with structures. If
X[] is a structure with a hole, we write X[Y ] for X[] with its hole filled with
structure Y . We will write X⊗[] for a ⊗-structure with a hole.

Furthermore, we extend the definition of hole to formulas, and define A[] as
a formula A with a hole in it, in a similar manner as for structures. Hence, by
A[B] we mean the formula A[] with its hole filled by formula B.

In order to distinguish between input and output polarity formulas, we write
A• for a formula with input polarity and A◦ for a formula with output polarity.
Note that for structures this is already defined by using X and Y for input
polarity and P and Q for output polarity. This can be extended to formulas in
a similar way, and we will this notation only in cases where the polarity is not
clear from the context.

3.3 Derived rules of inference

Now we will show and prove some derived rules of inference of LG.

Lemma 4. If `LG A → B and we want to prove X⊗[A] → P , we can replace
A by B in X⊗[]. We have the inference rule below:

A→ B X⊗[B]→ P

X⊗[A]→ P
Repl

Proof. We consider 3 cases:

1. If X⊗[A] = A, it is simply the cut-rule:

A→ B B → P
A→ P

Cut
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2. If X⊗[A] = Y ⊗[A] · ⊗ · V , we can move V to the righthand-side and use
induction to prove the sequent:

A→ B

Y ⊗[B] · ⊗ · V → P

Y ⊗[B]→ P · / · V
r

Y ⊗[A]→ P · / · V
Repl

Y ⊗[A] · ⊗ · V → P
r

3. If X⊗[A] = U · ⊗ · Y ⊗[A], we can move U to the righthand-side and use
induction to prove the sequent:

A→ B

U · ⊗ · Y ⊗[B]→ P

Y ⊗[B]→ U · \ · P
r

Y ⊗[A]→ U · \ · P
Repl

U · ⊗ · Y ⊗[A]→ P
r

ut
Lemma 5. If we want to prove X⊗[A�B]→ P , then we can move the expres-
sion �B out of the ⊗-structure. We have the inference rule below:

X⊗[A] · � ·B → P

X⊗[A�B]→ P
Move

Proof. We consider 3 cases:

1. If X⊗[A�B] = A�B, then this is simply the �L-rule:

A · � ·B → Y
A�B → Y

�L
2. If X⊗[A�B] = Y ⊗[A�B] ·⊗ ·V , we can move V to the righthand-side and

use induction together with the Grishin interaction principles to prove the
sequent:

(Y ⊗[A] · ⊗ · V ) · � ·B → P

Y ⊗[A] · ⊗ · V → P · ⊕ ·B dr

Y ⊗[A] · � ·B → P · / · V
d� /

Y ⊗[A�B]→ P · / · V Move

Y ⊗[A�B] · ⊗ · V → P
r

3. If X⊗[A�B] = U ·⊗ ·Y ⊗[A�B], we can move U to the righthand-side and
use induction together with the Grishin interaction principles to prove the
sequent:

(U · ⊗ · Y ⊗[A]) · � ·B → P

U · ⊗ · Y ⊗[A]→ P · ⊕ ·B dr

Y ⊗[A] · � ·B → U · \ · P
d� \

Y ⊗[A�B]→ U · \ · P Move

U · ⊗ · Y ⊗[A�B]→ P
r

ut
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Lemma 6. `LG A⊗B → P iff `LG A · ⊗ ·B → P

Proof. The if -part is trivial, this is simply the ⊗L rule:

A · ⊗ ·B → P
A⊗B → P

⊗L

The only-if -part can be derived as follows:

A→ A B → B
A · ⊗ ·B → A⊗B ⊗R A⊗B → P

A · ⊗ ·B → P
Cut

Note that because of the Cut elimination theorem, there exists a cut-free deriva-
tion for every possible choice of A, B and P .

ut

3.4 Type similarity

The type simililarity relation ∼, introduced by Lambek (1958), is the reflexive
transitive symmetric closure of the derivability relation. Formally we define this
as:

Definition 1. A ∼ B iff there exists a sequence C1 . . . Cn(1 ≤ i ≤ n) such that
C1 = A, Cn = B and Ci → Ci+1 or Ci+1 → Ci for all 1 ≤ i < n.

It was proved by Lambek that A ∼ B iff one of the following equivalent
statements holds (the so-called diamond property):

∃C such that A→ C and B → C (join)

∃D such that D → A and D → B (meet)

Definition 2. If A ∼ B and C is the join type of A and B so that A→ C and

B → C, we define A
C
u B = (A/((C/C)\C)) ⊗ ((C/C)\B) as the meet type of

A and B.

This is also the solution given by Lambek (1958) for the associative system L,
but in fact this is the shortest solution for the non-associative system NL (Foret,
2003).

Lemma 7. If A ∼ B with join-type C and `LG A → P or `LG B → P , then

we also have `LG A
C
u B → P . We can write this as a derived rule of inference:

A→ P or B → P

A
C
u B → P

Meet
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Proof.

1. If A→ P :

C → C C → C
C/C → C · / · C

/L

C/C → C/C
/R

B → C

(C/C)\B → (C/C) · \ · C
\L

(C/C)\B → (C/C)\C
\R

A→ P

A/((C/C)\C)→ P · / · ((C/C)\B)
/L

(A/((C/C)\C)) · ⊗ · ((C/C)\B)→ P
r

(A/((C/C)\C))⊗ ((C/C)\B)→ P
⊗L

2. If B → P :

A→ C

C → C C → C
C/C → C · / · C

/L

(C/C) · ⊗ · C → C
r

C → (C/C) · \ · C
r

C → (C/C)\C
\R

A/((C/C)\C)→ C · / · C
/L

A/((C/C)\C)→ C/C
/R

B → P

(C/C)\B → (A/((C/C)\C)) · \ · P
\L

(A/((C/C)\C)) · ⊗ · ((C/C)\B)→ P
r

(A/((C/C)\C))⊗ ((C/C)\B)→ P
⊗L

ut

The following lemma is the key lemma of this paper, and its use will become
clear to the reader in the construction of Section 4.

Lemma 8. If `LG A
C
u B → P then `LG A → P or `LG B → P , if it is not

the case that:

– P = P ′[A′[(A1 ⊗A2)◦]]
– `LG A/((C/C)\C)→ A1

– `LG (C/C)\B → A2

Proof. We have that `LG (A/((C/C)\C))⊗ ((C/C)\B)→ P , so from Lemma 6
we know that `LG (A/((C/C)\C)) · ⊗ · ((C/C)\B)→ P . Remark that this also
means that there exists a cut-free derivation for this sequent. By induction on
the length of the derivation we will show that if `LG (A/((C/C)\C)) · ⊗ · ((C/
C)\B)→ P , then `LG A→ P or `LG B → P , under the assumption that P is
not of the form that is explicitly excluded in this lemma.

The induction base is the case where a logical rule is applied on the lefthand-
side of the sequent. At a certain point in the derivation, possibly when P is an
atom, one of the 3 following rules must be applied:
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1. The ⊗R rule, but then P = A1 ⊗A2 and in order to come to a derivation it
must be the case that `LG A/((C/C)\C) → A1 and `LG (C/C)\B → A2.
However, this is explicitly excluded in this lemma so this can never be the
case.

2. The /L rule, in this case first the r rule is applied so that we have
`LG A/((C/C)\C) → P · / · ((C/C)\B). Now if the /L rule is applied, we
must have that `LG A→ P .

3. The \L rule, in this case first the r rule is applied so that we have
`LG (C/C)\B → (A/((C/C)\C)) · \ · P . Now if the \L rule is applied, we
must have that `LG B → P .

The induction step is the case where a logical rule is applied on the righthand-
side of the sequent. Let δ = {r, dr, d � /, d � \, d ; /, d ; \} and let δ∗ indicate
a (possibly empty) sequence of structural residuation steps and Grishin interac-
tions. For example for the �R rule there are 2 possibilities:

– The lefthand-side ends up in the first premisse of the �R rule:

(A/((C/C)\C)) · ⊗ · ((C/C)\B)→ P ′′[A′]
P ′[(A/((C/C)\C)) · ⊗ · ((C/C)\B)]→ A′

δ∗
B′ → Q

P ′[(A/((C/C)\C)) · ⊗ · ((C/C)\B)] · � ·Q→ A′ �B′ �R

(A/((C/C)\C)) · ⊗ · ((C/C)\B)→ P [A′ �B′] δ∗

In order to be able to apply the �R rule, we need to have a formula of the
form A′ �B′ on the righthand-side. In the first step all structural rules are
applied to display this formula in the righthand-side, and we assume that in
the lefthand-side the meet-type ends up in the first structural part (inside a
structure with the remaining parts from P that we call P ′). After the �R
rule has been applied, we can again display our meet-type in the lefthand-
side of the formula by moving all other structural parts from P ′ back to the
righthand-side (P ′′).
In this case it must be that `LG (A/((C/C)\C)) · ⊗ · ((C/C)\B)→ P ′′[A′],
and by induction we know that in this case also `LG A → P ′′[A′] or `LG

B → P ′′[A′]. In the case that `LG A→ P ′′[A′], we can show that `LG A→
P [A′ �B′] as follows:

A→ P ′′[A′]
P ′[A]→ A′

δ∗
B′ → Q

P ′[A] · � ·Q→ A′ �B′ �R

A→ P [A′ �B′] δ∗

The case for B is similar.
– The lefthand-side ends up in the second premisse of the �R rule:

Q→ A′
(A/((C/C)\C)) · ⊗ · ((C/C)\B)→ P ′′[B′]
B′ → P ′[(A/((C/C)\C)) · ⊗ · ((C/C)\B)] δ∗

Q · � · P ′[(A/((C/C)\C)) · ⊗ · ((C/C)\B)]→ A′ �B′ �R

(A/((C/C)\C)) · ⊗ · ((C/C)\B)→ P [A′ �B′] δ∗



14

This case is similar to the other case, except that the meet-type ends up in
the other premisse. Note that, although in this case it is temporarily moved
to the righthand-side, the meet-type will still be in an input polarity position
and can therefore be displayed in the lefthand-side again.
In this case it must be that `LG (A/((C/C)\C)) · ⊗ · ((C/C)\B)→ P ′′[B′],
and by induction we know that in this case also `LG A → P ′′[B′] or `LG

B → P ′′[B′]. In the case that `LG A→ P ′′[B′], we can show that `LG A→
P [A′ �B′] as follows:

Q→ A′
A→ P ′′[B′]
B′ → P ′[A] δ∗

Q · � · P ′[A]→ A′ �B′ �R

A→ P [A′ �B′] δ∗

The case for B is similar.

The cases for the other logical rules are similar. ut

4 Reduction from SAT to LG

In this section we will show that we can reduce a Boolean formula in conjunctive
normal form to a sequent of the Lambek-Grishin calculus, so that the correspond-
ing LG sequent is provable if and only if the CNF formula is satisfiable. This
has already been done for the associative system L by Pentus (2003) with a
similar construction.

Let ϕ = c1 ∧ . . . ∧ cn be a Boolean formula in conjunctive normal form with
clauses c1 . . . cn and variables x1 . . . xm. For all 1 ≤ j ≤ m let ¬0xj stand for
the literal ¬xj and ¬1xj stand for the literal xj . Now 〈t1, . . . , tm〉 ∈ {0, 1}m is
a satisfying assignment for ϕ if and only if for every 1 ≤ i ≤ n there exists a
1 ≤ j ≤ m such that the literal ¬tjxj appears in clause ci.

Let pi (for 1 ≤ i ≤ n) be distinct primitive types from V ar. We now define
the following families of types:

Ei
j(t) �

{
pi � (pi ; pi) if ¬txj appears in clause ci

pi otherwise
if 1 ≤ i ≤ n, 1 ≤ j ≤ m
and t ∈ {0, 1}

Ej(t) � E1
j (t)⊗ (E2

j (t)⊗ (. . . (En−1
j (t)⊗ En

j (t)))) if 1 ≤ j ≤ m and t ∈ {0, 1}
Hj � p1 ⊗ (p2 ⊗ (. . . (pn−1 ⊗ pn))) if 1 ≤ j ≤ m

Fj � Ej(1)
Hj

u Ej(0) if 1 ≤ j ≤ m
G0 � H1 ⊗ (H2 ⊗ (. . . (Hm−1 ⊗Hm)))

Gi � Gi−1 � (pi ; pi) if 1 ≤ i ≤ n
Let ϕ̄ = F1⊗ (F2⊗ (. . . (Fm−1⊗Fm)))→ Gn be the LG sequent corresponding
to the Boolean formula ϕ. We now claim that the � ϕ if and only if `LG ϕ̄.
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4.1 Example

Let us take the Boolean formula (x1∨¬x2)∧(¬x1∨¬x2) as an example. We have
the primitive types {p1, p2} and the types as shown in Figure 3. The formula
is satisfiable, thus `LG F1 ⊗ F2 → G2. A sketch of the derivation is given in
Figure 3, some parts are proved in lemma’s later on.

4.2 Intuition

Let us give some intuitions for the different parts of the construction, and a
brief idea of why this would work. The basic idea is that on the lefthand-side
we create a type for each literal (Fj is the formula for literal j), which will in
the end result in the base type Hj , so F1 ⊗ (F2 ⊗ (. . . (Fm−1 ⊗ Fm))) will result
in G0. However, on the righthand-side we have an occurence of the expression
�(pi ;pi) for each clause i, so in order to come to a derivation, we need to apply
the �R rule for every clause i.

Each literal on the lefthand-side will result in either Ej(1) (xj is true) or
Ej(0) (xj is false). This choice is created using a join type Hj such that `LG

Ej(1)→ Hj and `LG Ej(0)→ Hj , which we use to construct the meet type Fj .
It can be shown that in this case `LG Fj → Ej(1) and `LG Fj → Ej(0), i.e.
in the original formula we can replace Fj by either Ej(1) or Ej(0), giving us a
choice for the truthvalue of xj .

Let us assume that we need x1 = true to satisfy the formula, so on the
lefthand-side we need to replace Fj by E1(1). E1(1) will be the product of exactly
n parts, one for each clause (E1

1(1) . . . En
1 (1)). Here Ei

1(1) is pi � (pi ; pi) iff x1

does appear in clause i, and pi otherwise. The first thing that should be noticed
that `LG pi � (pi ; pi)→ pi, so we can rewrite all pi � (pi ; pi) into pi so that
`LG E1(1)→ H1.

However, we can also use the type pi�(pi ;pi) to facilitate the application of
the �R rule on the occurrence of the expression �(pi ;pi) in the righthand-side.
From Lemma 5 we know that `LG X⊗[pi � (pi ; pi)] → Gi if `LG X⊗[pi] · � ·
(pi ; pi) → Gi, so if the expression �Y occurs somewhere in a ⊗-structure we
can move it to the outside. Hence, from the occurrence of pi � (pi ; pi) on the
lefthand-side we can move �(pi ; pi) to the outside of the ⊗-structure and pi

will be left behind within the original structure (just like if we rewrote it to pi).
However, the sequent is now of the form X⊗[pi] ·� · (pi ; pi)→ Gi−1� (pi ; pi),
so after applying the �R rule we have X⊗[pi]→ Gi−1.

Now if the original CNF formula is satisfiable, we can use the meet types on
the lefthand-side to derive the correct value of Ej(1) or Ej(0) for all j. If this
assignment indeed satisfies the formula, then for each i the formula pi� (pi ;pi)
will appear at least once. Hence, for all occurrences of the expression �(pi ; pi)
on the righthand-side we can apply the �R rule, after which the rest of the
pi � (pi ; pi) can be rewritten to pi in order to derive the base type.

If the formula is not satisfiable, then there will be no way to have the pi �
(pi;pi) types on the lefthand-side for all i, so there will be at least one occurence
of �(pi ;pi) on the righthand-side where we cannot apply the �R rule. Because
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the � will be the main connective we cannot apply any other rule, and we will
never come to a valid derivation.

Note that the meet type Fj provides an explicit switch, so we first have to
replace it by either Ej(1) or Ej(0) before we can do anything else with it. This
guarantees is that if `LG ϕ̄, there also must be some assignment 〈t1, . . . , tm〉 ∈
{0, 1}m such that `LG E1(t1)⊗ (E2(t2)⊗ (. . . (Em−1(tm−1)⊗Em(tm))))→ Gn,
which means that 〈t1, . . . , tm〉 is a satisfying assigment for ϕ.

5 Proof

We will now prove the main claim that � ϕ if and only if `LG ϕ̄. First we will
prove that if � ϕ, then `LG ϕ̄.

5.1 If-part

Let us assume that � ϕ, so there is an assignment 〈t1, . . . , tm〉 ∈ {0, 1}m that
satisfies ϕ.

Lemma 9. If 1 ≤ i ≤ n, 1 ≤ j ≤ m and t ∈ {0, 1} then `LG Ei
j(t)→ pi.

Proof. We consider two cases:

1. If Ei
j(t) = pi this is simply the axiom rule.

2. If Ei
j(t) = pi � (pi ; pi) we can prove it as follows:

pi → pi pi → pi

pi ·; · pi → pi ; pi
;R

pi → pi · ⊕ · (pi ; pi)
dr

pi · � · (pi ; pi)→ pi
dr

pi � (pi ; pi)→ pi
�L

ut

Lemma 10. If 1 ≤ j ≤ m and t ∈ {0, 1}, then `LG Ej(t)→ Hj.

Proof. By applying the ⊗L rule n − 1 times together with the r rules we can
turn Ej(t) into a ⊗-structure. From Lemma 9 we know that `LG Ei

j(t)→ pi, so
using Lemma 4 we can replace all Ei

j(t) by pi in Ej(t) after which we can apply
the ⊗R rule n− 1 times to prove the lemma. ut

Lemma 11. If 1 ≤ j ≤ m, then `LG Fj → Ej(tj)

Proof. From Lemma 10 we know that `LG Ej(1) → Hj and `LG Ej(0) → Hj ,
so Ej(1) ∼ Ej(0) with join-type Hj . Now from Lemma 7 we know that `LG

Ej(1)
Hj

u Ej(0)→ Ej(1) and `LG Ej(1)
Hj

u Ej(0)→ Ej(0). ut
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Lemma 12. We can replace each Fj in ϕ̄ by Ej(tj), so:

E1(t1) · ⊗ · (E2(t2) · ⊗ · (. . . (Em−1(tm−1) · ⊗ · Em(tm))))→ Gn

F1 ⊗ (F2 ⊗ (. . . (Fm−1 ⊗ Fm)))→ Gn

Proof. This can be proven by applying the⊗L rulem−1 times (together with the
r rules) to turn it into a ⊗-structure, and then apply Lemma 11 in combination
with Lemma 4 m times. ut

Lemma 13. In E1(t1) · ⊗ · (E2(t2) · ⊗ · (. . . (Em−1(tm−1) · ⊗ ·Em(tm))))→ Gn,
there is at least one occurrence of pi � (pi ; pi) in the lefthand-side for every
1 ≤ i ≤ n.

Proof. This sequence of E1(t1), . . . , Em(tm) represent the truthvalue of all vari-
ables, and because this is a satisfying assignment, for all i there is at least
one index k such that ¬tk

xk appears in clause i. By definition we have that
Ei

k(tk) = pi � (pi ; pi). ut

Definition 3. Y i
j � Ej(tj) with every occurrence of pk � (pk ; pk) replaced by

pk for all i < k ≤ n

Lemma 14. `LG Y 0
1 · ⊗ · (Y 0

2 · ⊗ · (. . . (Y 0
m−1 · ⊗ · Y 0

m)))→ G0

Proof. Because Y 0
j = Hj by definition for all 1 ≤ j ≤ m and G0 = H1 ⊗ (H2 ⊗

(. . . (Hm−1⊗Hm))), this can be proven by applying the ⊗R rule m−1 times. ut

Lemma 15. If `LG Y i−1
1 · ⊗ · (Y i−1

2 · ⊗ · (. . . (Y i−1
m−1 · ⊗ · Y i−1

m )))→ Gi−1, then
`LG Y i

1 · ⊗ · (Y i
2 · ⊗ · (. . . (Y i

m−1 · ⊗ · Y i
m)))→ Gi

Proof. From Lemma 13 we know that pi � (pi ; pi) occurs in Y i
1 · ⊗ · (Y i

2 · ⊗ ·
(. . . (Y i

m−1 · ⊗ · Y i
m))) (because the Y i

j parts are Ej(tj) but with pk � (pk ; pk)
replaced by pk only for k > i). Using Lemma 5 we can move the expression
�(pi ; pi) to the outside of the lefthand-side of the sequent, after which we can
apply the �R-rule. After this we can replace all other occurrences of pi�(pi;pi)
by pi using Lemma 9 and Lemma 4. This process can be summarized as:

Y i−1
1 · ⊗ · (Y i−1

2 · ⊗ · (. . . (Y i−1
m−1 · ⊗ · Y i−1

m )))→ Gi−1 pi ; pi → pi ; pi

(Y i−1
1 · ⊗ · (Y i−1

2 · ⊗ · (. . . (Y i−1
m−1 · ⊗ · Y i−1

m )))) · � · (pi ; pi)→ Gi−1 � (pi ; pi)
�R

Y i−1
1 · ⊗ · (Y i−1

2 · ⊗ · (. . . (Y i−1
m−1 · ⊗ · Y i−1

m ))) · � · (pi ; pi)→ Gi

Def

Y i−1
1 · ⊗ · (Y i−1

2 · ⊗ · (. . . (Y i−1
m−1 · ⊗ · Y i−1

m )))→ Gi

13, 5

Y i
1 · ⊗ · (Y i

2 · ⊗ · (. . . (Y i
m−1 · ⊗ · Y i

m)))→ Gi

9, 4

ut

Lemma 16. `LG Y n
1 · ⊗ · (Y n

2 · ⊗ · (. . . (Y n
m−1 · ⊗ · Y n

m)))→ Gn

Proof. We can prove this using induction with Lemma 14 as base and Lemma 15
as induction step. ut
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Lemma 17. If � ϕ, then `LG ϕ̄,

Proof. From Lemma 16 we know that `LG Y n
1 ·⊗·(Y n

2 ·⊗·(. . . (Y n
m−1 ·⊗·Y n

m)))→
Gn, and because by definition Y n

j = Ej(tj), we also have that `LG E1(t1) · ⊗ ·
(E2(t2) · ⊗ · (. . . (Em−1(tm−1) · ⊗ ·Em(tm))))→ Gn. Finally combining this with
Lemma 12 we have that `LG ϕ̄ = F1 ⊗ (F2 ⊗ (. . . (Fm−1 ⊗ Fm))) → Gn, using
the assumption that � ϕ. ut

5.2 Only-if part

For the only-if part we will need to prove that if `LG ϕ̄, then � ϕ. Let us now
assume that `LG ϕ̄.

Lemma 18. If `LG X → P � Y , then there exist a Q such that Q is part of X
(possibly inside a formula in X) and `LG Y → Q.

Proof. The only rule that matches a � in the righthand-side is the �R rule.
Because this rule needs a · � · connective in the lefthand-side, we know that if
`LG X → P � Y it must be the case that we can turn X into X ′ · � · Q such
that `LG X ′ → P and `LG Y → Q. ut

Lemma 19. If `LG E1(t1)·⊗·(E2(t2)·⊗·(. . . (Em−1(tm−1)·⊗·Em(tm)))→ Gn,
then there is an occurrence pi � (pi ; pi) on the lefthand-side at least once for
all 1 ≤ i ≤ n.

Proof. Gn by definition contains an occurrence of the expression �(pi ; pi) for
all 1 ≤ i ≤ n. From Lemma 18 we know that somewhere in the lefthand-side
we need an occurrence of a structure Q such that `LG pi ; pi → Q. From the
construction it is obvious that the only possible type for Q is in this case pi ;pi,
and it came from the occurrence of pi � (pi ; pi) on the lefthand-side. ut

Lemma 20. If `LG E1(t1)·⊗·(E2(t2)·⊗·(. . . (Em−1(tm−1)·⊗·Em(tm)))→ Gn,
then 〈t1, t2, . . . , tm−1, tm〉 is a satisfying assignment for the CNF formula.

Proof. From Lemma 19 we know that there is a pi�(pi ;pi) in the lefthand-side
of the formula for all 1 ≤ i ≤ n. From the definition we know that for each i
there is an index j such that Ei

j(tj) = pi � (pi ; pi), and this means that ¬tj
xj

appears in clause i, so all clauses are satisfied. Hence, this choice of t1 . . . tm is a
satisfying assignment. ut

Lemma 21. If 1 ≤ j ≤ m and `LG X⊗[Fj ]→ Gn, then `LG X⊗[Ej(0)]→ Gn

or `LG X⊗[Ej(1)]→ Gn.

Proof. We know that X⊗[Fj ] is a ⊗-structure, so we can apply the r rule several
times to move all but the Fj-part to the righthand-side. We then have that
`LG Fj → . . . · \ · Gn · / · . . . . From Lemma 8 we know that now have that
`LG Ej(0) → . . . · \ ·Gn · / · . . . or `LG Ej(1) → . . . · \ ·Gn · / · . . . . Finally we
can apply the r rule again to move all parts back to the lefthand-side, to show
that `LG X⊗[Ej(0)]→ Gn or `LG X⊗[Ej(1)]→ Gn.
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Note that, in order for Lemma 8 to apply, we have to show that this sequent
satisfies the constraints. Gn does contain A1⊗A2 with output polarity, however
the only connectives in A1 and A2 are ⊗. Because no rules apply on A/((C/
C)\C) → A′1 ⊗ A′′1 , we have that 6`LG A/((C/C)\C) → A1. In X⊗[], the only
⊗ connectives are within other Fk, however these have an input polarity and do
not break the constraints either.

So, in all cases Fj provides an explicit switch, which means that the truthvalue
of a variable can only be changed in all clauses simultanously. ut

Lemma 22. If `LG ϕ̄, then � ϕ.

Proof. From Lemma 21 we know that all derivations will first need to replace
each Fj by either Ej(1) or Ej(0). This means that if `LG F1⊗(F2⊗(. . . (Fm−1⊗
Fm))) → Gn, then also `LG E1(t1) · ⊗ · (E2(t2) · ⊗ · (. . . (Em−1(tm−1) · ⊗ ·
Em(tm))) → Gn for some 〈t1, t2, . . . , tm−1, tm〉 ∈ {0, 1}m. From Lemma 20 we
know that this is a satisfying assignment for ϕ, so if we assume that `LG ϕ̄, then
� ϕ. ut

5.3 Conclusion

Theorem 1. LG is NP-complete.

Proof. From Lemma 3 we know that for every derivable sequent there exists a
derivation that is of polynomial length, so the derivability problem for LG is in
NP . From Lemma 17 and Lemma 22 we can conclude that we can reduce SAT
to LG. Because SAT is a known NP-hard problem (Garey and Johnson, 1979),
and our reduction is polynomial, we can conclude that derivability for LG is
also NP-hard.

Combining these 2 facts we conclude that the derivability problem for LG is
NP-complete. ut

6 The product-free case

In the product-free fragment of LG, the ⊗L, ⊗R, ⊕L and ⊕R rules are omitted,
so formulas cannot contain the ⊗ or ⊕ connectives. Note that the structural ·⊗ ·
and · ⊕ · can still occur in derivations, for example after application of a r or dr
rule.

For the product-free fragment of L it has been proven by Savateev (2009)
that the derivability problem is also NP-complete. This is a remarkable result
that does not follow directly from the fact that the derivability problem for
L itself is NP-complete. It is known that removing the product restricts the
calculus in an essential way, for example the diamond property does not hold in
its original form in the product-free fragment (Pentus, 1993a). As the diamond
property was used in the original proof by Pentus (2003), it could have been the
case that the reduction from SAT was not possible in the product-free fragment.
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However, as Savateev proved this is not the case, and the product-free fragment
pf L is also NP-complete.

In this section we will show that we can also reduce a Boolean formula
in conjunctive normal form to a product-free sequent of the Lambek-Grishin
calculus. Let again ϕ = c1 ∧ . . .∧ cn be a Boolean formula in conjunctive normal
form with clauses c1 . . . cn and variables x1 . . . xm and for all 1 ≤ j ≤ m let ¬0xj

stand for the literal ¬xj and ¬1xj stand for the literal xj .
Let pi (for 1 ≤ i ≤ n) be distinct primitive types from V ar. We define the

following families of types:

Ei
j(t) �

{
pi/(pi\pi) if ¬txj appears in clause ci

pi otherwise
if 1 ≤ i ≤ n, 1 ≤ j ≤ m
and t ∈ {0, 1}

Ej(t) � (((((s/s)� E1
j (t))� E2

j (t))� . . .)� En−1
j (t))� En

j (t) if 1 ≤ j ≤ m and t ∈ {0, 1}
H � (((((s/s)� p1)� p2)� . . .)� pn−1)� pn

F 0
j � Ej(0)/((H/H)\H) if 1 ≤ j ≤ m
F 1

j � (H/H)\Ej(1) if 1 ≤ j ≤ m
G0

m � s

Gi
0 � Gi−1

m if 1 ≤ i ≤ n
Gi

j � Gi
j−1 � pi if 1 ≤ i ≤ n and 1 ≤ j < m

Gi
m � Gi

m−1 � (pi/(pi\pi)) if 1 ≤ i ≤ n
Let ϕ̄ = (F 0

1 ·⊗ ·F 1
1 ) ·⊗ · (. . . ((F 0

m−1 ·⊗ ·F 1
m−1) ·⊗ · ((F 0

m ·⊗ ·F 1
m) ·⊗ ·s)))→ Gn

m

be the product-free LG sequent corresponding to the Boolean formula ϕ. We
now claim that the � ϕ if and only if `LG ϕ̄.

6.1 Intuition

For each variable we use again a kind of meet-type to create a choice for its
truthvalue. Remark that the diamond property does not hold in the product-
free case in its original form, i.e. if we have `LG A → C and `LG B → C,
it is not always the case that there exists a product-free formula D such that
`LG D → A and `LG D → B. However, we can always construct the formulas
D1 = A/((C/C)\C) and D2 = (C/C)\B such that `LG D1 · ⊗ · D2 → A and
`LG D1 · ⊗ ·D2 → B. Note that this structure is the same as the structure in
Lemma 8, so we know that this property holds.

In the construction we now have F 0
j and F 1

j as parts of the meet-type. We
can replace these by either Ej(1) or Ej(0), so that we have E1(t1) · ⊗ · (E2(t2) ·
⊗ · (. . . (Em−1(tm−1) ·⊗ · (Em(tm) ·⊗ ·s))))→ Gn

m for some 〈t1, t2 . . . tm−1, tm〉 ∈
{0, 1}m.

Let us call a formula of the form ((((A � B1) � B2) � . . .) � Bn−1) � Bn a
�-stack with n items, and let us call Bn the topmost item of this stack. A is
considered to be the base of this �-stack.
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The sequent E1(t1)·⊗·(E2(t2)·⊗·(. . . (Em−1(tm−1)·⊗·(Em(tm)·⊗·s))))→ Gn
m

consists of m �-stacks in the lefthand-side (E1(t1) . . . Em(tm)), each containing
one item for every clause. On the righthand-side there is also a �-stack, with
n ·m items. Because of the logical � connective on the righthand-side, there has
to be a matching item on the lefthand-side for every item from the righthand-
side. By means of the Grishin interactions, every topmost item from a �-stack
in the lefthand-side can directly match with the item on the righthand-side, as
the lefthand-side is an ⊗-structure.

Now the �-stack on the righthand-side will be in order of decreasing clause
number. For each clause it first contains the type pi/(pi\pi), so in the lefthand-
side there has to be at least one item pi/(pi\pi) (meaning that there is a variable
satisfying clause i). Then, there are m− 1 types pi to remove the rest of the pi

or pi/(pi\pi) in the lefthand-side. Note that `LG pi → pi/(pi\pi).
Finally, if all items from the stacks could be removed, for each clause there

was a variable satisfying it, so we are left with (s/s) · ⊗ · ((s/s) · ⊗ · ...((s/
s) · ⊗ · s))→ s which is obviously derivable. If it was not satisfyable, there was
at least 1 index i for which there was no pi/(pi\pi) in the lefthand-side, so the
sequent is not derivable.

6.2 If-part

We will now prove that if � ϕ, then `LG ϕ̄. We now assume that � ϕ, so there
is an assignment 〈t1, . . . , tm〉 ∈ {0, 1}m that satisfies ϕ.

Lemma 23. If 1 ≤ i ≤ n, 1 ≤ j ≤ m and t ∈ {0, 1} then `LG pi → Ei
j(t).

Proof. We consider two cases:

1. If Ei
j(t) = pi this is simply the axiom rule.

2. If Ei
j(t) = pi/(pi\pi) we can prove it as follows:

pi → pi pi → pi

pi\pi → pi · \ · pi
\L

pi · ⊗ · (pi\pi)→ pi

r

pi → pi · / · (pi\pi)
r

pi → pi/(pi\pi)
/R

ut

Lemma 24. If 1 ≤ j ≤ m and t ∈ {0, 1} then `LG Ej(t)→ H.

Proof. We can apply the �R rule n times together with Lemma 23 to prove
this. ut

Lemma 25. If 1 ≤ j ≤ m then `LG F 0
j · ⊗ · F 1

j → Ej(tj).

Proof. F 0
j ·⊗ ·F 1

j is the meet-type from Lemma 7 with a structural ·⊗ · in place
of the original ⊗. From Lemma 24 we know that Hj is the join type of Ej(0)
and Ej(1), so `LG F 0

j ⊗ F 1
j → Ej(tj). Finally from Lemma 6 we know that in

this case also `LG F 0
j · ⊗ · F 1

j → Ej(tj). ut



23

Lemma 26. We can replace each F 0
j · ⊗ · F 1

j in ϕ̄ by Ej(tj), so:

E1(t1) · ⊗ · (. . . (Em−1(tm−1) · ⊗ · (Em(tm) · ⊗ · s)))→ Gn
m

(F 0
1 · ⊗ · F 1

1 ) · ⊗ · (. . . ((F 0
m−1 · ⊗ · F 1

m−1) · ⊗ · ((F 0
m · ⊗ · F 1

m) · ⊗ · s)))→ Gn
m

Proof. This can be proven by applying the ⊗L rule m times (together with the
r rules) to turn it into a ⊗-structure, and then apply Lemma 25 in combination
with Lemma 4 m times. ut

Lemma 27. In E1(t1) ·⊗ · (. . . (Em−1(tm−1) ·⊗ · (Em(tm) ·⊗ · s)))→ Gn
m, there

is at least one occurrence of the expression �(pi/(pi\pi)) in the lefthand-side for
every 1 ≤ i ≤ n.

Proof. This sequence of E1(t1), . . . , Em(tm) represent the truthvalue of all vari-
ables, and because this is a satisfying assignment, for all i there is at least
one index k such that ¬tk

xk appears in clause i. By definition we have that
Ei

k(tk) = pi/(pi\pi). ut

Lemma 28. `LG E1(t1) · ⊗ · (. . . (Em−1(tm−1) · ⊗ · (Em(tm) · ⊗ · s)))→ Gn
m.

Proof. We prove this by induction on the length of Gn
m. By definition we have

that Gn
m = Gn

m−1 � (pn/(pn\pn)), and from Lemma 27 we know that the ex-
pression �(pn/(pn\pn)) occurs on the lefthand-side as outermost part of some
Ek(tk), so by using Lemma 5 we can move this expression to the outside of the
lefthand-side after which we can apply the �R rule.

Now on the righthand-side we have Gn
m−1, which consists of Gn−1

m surrounded
by m−1 occurrences of the expression �pn. In the lefthand-side there are m−1
occurrences of �En

j (tj), for every 1 ≤ j ≤ m (j 6= k). Using the fact from
Lemma 23 that `LG En

j (tj)→ pn, we can again use Lemma 5 and the �R rule
to remove all these expressions from the left- and righthand-side.

The sequent that remains is of exactly the same form, but for n− 1 instead
of n clauses. The same reasoning applies on this sequent, so we can repeat this
process n times. Then, the �R rule has been applied n ·m times in total, and
the sequent will be of the form (s/s) · ⊗ · ((s/s) · ⊗ · . . . ((s/s) · ⊗ · s))) → s.
This can easily be derived, so it must be the case that also `LG E1(t1) · ⊗ ·
(. . . (Em−1(tm−1) · ⊗ · (Em(tm) · ⊗ · s)))→ Gn

m. ut

Lemma 29. If � ϕ, then `LG ϕ̄,

Proof. From Lemma 28 we know that `LG E1(t1) · ⊗ · (. . . (Em−1(tm−1) · ⊗ ·
(Em(tm) · ⊗ · s))) → Gn

m, and using Lemma 26 we know that in this case also
`LG (F 0

1 ·⊗ ·F 1
1 ) ·⊗ · (. . . ((F 0

m−1 ·⊗ ·F 1
m−1) ·⊗ · ((F 0

m ·⊗ ·F 1
m) ·⊗ ·s)))→ Gn

m. ut

6.3 Only-if part

For the only-if part we will need to prove that if `LG ϕ̄, then � ϕ. Let us now
assume that `LG ϕ̄.
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Lemma 30. If `LG E1(t1) · ⊗ · (. . . (Em−1(tm−1) · ⊗ · (Em(tm) · ⊗ · s)))→ Gn
m,

then there is an occurrence of pi/(pi\pi) on the lefthand-side at least once for
all 1 ≤ i ≤ n.

Proof. Gn
m by definition contains an occurrence of the expression �(pi/(pi\pi))

for all 1 ≤ i ≤ n. From Lemma 18 we know that somewhere in the lefthand-side
we need an occurrence of a structure Q such that `LG pi/(pi\pi) → Q. From
the construction it is obvious that the only possible type for Q is in this case
pi/(pi\pi). ut

Lemma 31. If `LG E1(t1) · ⊗ · (. . . (Em−1(tm−1) · ⊗ · (Em(tm) · ⊗ · s)))→ Gn
m,

then 〈t1, . . . , tm−1, tm〉 is a satisfying assignment for the CNF formula.

Proof. From Lemma 30 we know that there is an occurrence of pi/(pi\pi) in the
lefthand-side of the formula for all 1 ≤ i ≤ n. From the definition we know that
for each i there is an index j such that Ei

j(tj) = pi/(pi\pi), and this means that
¬tj

xj appears in clause i, so if for every 1 ≤ i ≤ n there is an occurrence of
pi/(pi\pi) in the lefthand-side then all clauses are satisfied. Hence, this choice
of t1 . . . tm is a satisfying assignment. ut

Lemma 32. If 1 ≤ j ≤ m and `LG X⊗[F 0
j ·⊗·F 1

j ]→ Gn
m, then `LG X⊗[Ej(0)]→

Gn
m or `LG X⊗[Ej(1)]→ Gn

m.

Proof. We know that X⊗[F 0
j ·⊗·F 1

j ] is a ⊗-structure, so we can apply the r rule
several times to move all but the structure F 0

j · ⊗ ·F 1
j to the righthand-side. We

then have that `LG F 0
j ·⊗·F 1

j → . . .·\·Gn
m ·/·. . . . As remarked in Lemma 25 this

is exactly the meet-type from Lemma 8 with a structural · ⊗ ·, so we know that
now have that `LG Ej(0)→ . . . · \ ·Gn

m ·/ · . . . or `LG Ej(1)→ . . . · \ ·Gn
m ·/ · . . . .

Finally we can apply the r rule again to move all parts back to the lefthand-side,
to show that `LG X⊗[Ej(0)]→ Gn

m or `LG X⊗[Ej(1)]→ Gn
m.

Note that, in order for Lemma 8 to apply we need to show that this sequent
satisfies the constrains. However, as we are now using the product-free LG the
⊗ connective will never appear so the constraints are always satisfied. So, in all
cases F 0

j · ⊗ ·F 1
j provides an explicit switch, which means that the truthvalue of

a variable can only be changed in all clauses simultanously. ut

Lemma 33. If `LG ϕ̄, then � ϕ.

Proof. From Lemma 32 we know that all derivations will first need to replace
each F 0

j · ⊗ ·F 1
j by either Ej(1) or Ej(0). This means that if `LG (F 0

1 · ⊗ ·F 1
1 ) ·

⊗·(. . . ((F 0
m−1 ·⊗·F 1

m−1) ·⊗·((F 0
m ·⊗·F 1

m) ·⊗·s)))→ Gn
m, then also `LG E1(t1) ·

⊗ · (. . . (Em−1(tm−1) · ⊗ · (Em(tm) · ⊗ · s)))→ Gn
m for some 〈t1, . . . , tm−1, tm〉 ∈

{0, 1}m. From Lemma 31 we know that this is a satisfying assignment for ϕ, so
if we assume that `LG ϕ̄, then � ϕ. ut
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6.4 Conclusion

Theorem 2. The product-free fragment of LG is NP-complete.

Proof. From Lemma 3 we know that for every derivable sequent there exists
a derivation that is of polynomial length, so the derivability problem for (the
product-free fragment of) LG is in NP . From Lemma 29 and Lemma 33 we can
conclude that we can reduce SAT to the product-free fragment of LG. Because
SAT is a known NP-hard problem (Garey and Johnson, 1979), and our reduction
is polynomial, we can conclude that derivability for the product-free fragment
LG is also NP-hard.

Combining these 2 facts we conclude that the derivability problem for the
product-free fragment of LG, like the derivability problem for LG, is NP-
complete. ut

7 Conclusion and future work

We have showed that both LG and the product-free fragment of LG are NP-
complete. Unfortunately this is an undesired property, as we would like to have an
effient method for distinguishing between sentences and non-sentences. However,
this result does not automatically mean that the calculus is useless, as it might be
the case that certain restrictions on the derivations could guarantee polynomial
time derivability while maintaining enough expressivity for natural languages.

In the next sections we will describe some ideas for future work on the com-
plexity, as wel as the expressivity.

7.1 Bound on nesting depth

In the constructions for proving NP-completeness we have artificially constructed
very complicated formulas. For example for a Boolean formula with n clauses,
the righthand side of the sequent will consist of a formula with a literal that is
nested in n �-connectives.

In working with natural languages these deeply-nested formulas will not oc-
cur. Although the input sentences could be very long, the individual types of the
words will be predefined, and therefore bounded to only a small nesting depth.
So, it could be acceptable to place a bound on the maximum nesting depth.
In this way the expressivity will remain, but the complexity of the derivability
problem could be polynomial. However, this has not been looked into yet and is
still an open problem.

7.2 Addition and multiplication

It is possible to model counting in LG. Let us define the following grammar:

Word Types
a (s/s)� (s; a), s� (s; a)
c (s/s)� (a; s), s� (a; s)
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This grammar will generate the permutation closure of the context-free language
{ancn|n ∈ N}, so all strings with an equal number of a’s an c’s.

If we add the word b to this lexicon and assign it the same types as a, this will
generate the permutation closure of the language {anbmck|n,m ∈ N, k = m+n},
so the language of strings where the number of a’s plus the number of b’s is equal
to the number of c’s. This can be seen as a model for addition.

Now the question is: is it also possible to define a grammar that recognizes
strings where the number of a’s multiplied by the number of b’s equals the number
of c’s? Intuitively I would answer this question with a no, but I have not proven
this yet and it therefore remains an open question.

7.3 The pigeonhole principle

The pigeonhole principle (Cook and Reckhow, 1979) can be defined as follows:
if there are n items that are put in m pigeonholes and n > m, there must be at
least one pigeonhole with more than one item in it. This might seem trivial, but
it turns out to be an interesting problem.

It is easy to define the problem in propositional logic, but finding a polyno-
mial size proof for this in proposional formula is much harder. The trivial proof
is of exponential length, but it turns out that by means of counting a polynomial
proof can be given.

Another interesting question arises: is it possible to encode the pigeonhole
principle in LG? And is it possible to find a polynomial size derivation for it?
The first question is still an open problem, and thus cannot be answered, but
we could answer the second question: If it is possible to encode the pigeonhole
principle in LG, then there will exist a polynomial size derivation for it. It can
be easily seen that if it can be encoded then the corresponding sequent will be
derivable, and from Lemma 3 we know that if this sequent is derivable, there
exists a polynomial size derivation.



Part II

Theorem prover
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8 Overview

Researchers that are working with the different kinds of categorial grammars,
are often interested in having automated theorem provers for these grammars.
For the structure preserving categorial grammars like AB grammars, NL and
bi-NL (the system LG without Grishin interaction principles) theorem proving
algorithms have been given by Capelletti (2007). The work by Capelletti also
gives an overview of related calculi.

For L, NL and NL♦ a theorem prover called Grail has been developed
by Moot (1999). This theorem prover cannot only find derivations for a given
sequent (based on a lexicon), but also has an interactive interface to allow the
user to choose between different derivations. Since the paper from 1999 it has
been updated multiple times, and the current latest version is Grail 3 1.

For LG there has been an implementation by Moot (2008) of a theorem
prover called Hyperion2. This theorem prover is based on proofnets for LG
embedded in Hyperedge Replacement Grammars. It is known that LG sequents
can also be represented as proofnets (Moot, 2007), and Moot (2008) claimed
that these proofnets are bound to certain restrictions in such way that they
could be embedded in Hyperedge Replacement Grammars, for which there exist
polynomial algorithms. Unfortunately it turned out that there exist sequents in
LG that do not satisfy these restrictions, and the Hyperion theorem prover can
therefore find derivations only for a fragment of LG.

9 Implementation

Together with this thesis a theorem prover for LG has been written. The the-
oretical runtime complexity of this theorem prover is in EXPTIME, which is no
surprise after the result of Theorem 1. Although this means that the derivability
problem is hard, it does not mean it is impossible to solve it, and as we will show
this theorem prover can find derivations for smaller sequents (for example the
ones used in examples for natural languages) within seconds.

The theorem prover, written in C++, has been set up as a generic theorem
prover for categorial grammars in display logic format. A generic structure has
been chosen for encoding the inference rules, in such a way that other rules
can easily be added in later stages. The prover supports both unary and binary
connectives, and it will return a representation of the derivation which can easily
be translated to for example a LATEX representation (already build-in) or a term
of the λ̄µµ̃ calculus (Curien and Herbelin, 2000; Bernardi and Moortgat, 2010).

We will now discuss the implementational details of this theorem prover.

9.1 Representation

In this section we will discuss the structure of the internal representation of
formulas, structures, sequents, inference rules and derivations. For memory ef-
1 http://www.labri.fr/perso/moot/grail3.html
2 http://www.labri.fr/perso/moot/hyperion/

http://www.labri.fr/perso/moot/grail3.html
http://www.labri.fr/perso/moot/hyperion/
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ficiency all of these have been implemented as a struct in C++, so there is no
overhead of extra information about the objects like there would be in an object
oriented approach. The downside of this is that there cannot be any automatic
garbage collection, so we will have to free al memory that is used ourselves.

Let us first declare the unary and binary connectives. These are implemented
as an enum and take only 1 byte of memory. Currently we have defined the
following unary and binary connectives:

enum UNARY_CONNECTIVE { ZERO, ONE };
enum BINARY_CONNECTIVE { OTIMES, BACKSLASH, SLASH,

OPLUS, OBACKSLASH, OSLASH};

The unary connectives refer to the (dual) Galois negations, the binary connec-
tives refer to the six binary connectives used in LG.

For formulas and structures we distinguish between three different types:

– Primitive: The smallest possible formula (structure), in case of a formula
this is a literal, in case of a structure this is a formula.

– Unary : A formula (structure) that is preceded or followed by an unary con-
nective; a boolean value in the representation of the formula (structure) will
indicate whether this is a prefix or postfix unary connective.

– Binary : Two formulas (structures) that are combined by a binary connective.

Now the declaration of a formula is as follows:

struct Formula {
FORMULA_STRUCTURE_TYPE type;
union {

/* Primitive */
struct {

char *name;
};
/* Unary */
struct {

bool prefix;
UNARY_CONNECTIVE unary_connective;
Formula *inner;

};
/* Binary */
struct {

Formula *left;
BINARY_CONNECTIVE binary_connective;
Formula *right;

};
};

};

The union keyword is used in C++ to declare a list of items, of which only 1 can
be set at a time. In our case this means that only one of the three inner structs
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can be set, which is obviously the supposed behaviour. The type has to be set
in all cases to indicate which of the three types this formula represents.

The representation for structures is very similar to those of formulas and the
declaration will therefore not be given. The type of a primitive is in this case
Formula *, and the types of inner, left and right are Structure *.

For sequents we will also consider three different types: Formula left, formula
right, or structural. Remark that in the representation of LG given in Chapter 2
we only considered sequents of the structural type, and we considered a formulaA
and a structure X containing formula A as a primitive to be the same. However,
to allow for distinction between active and passive formulas we will consider
these as not equal, and we will add rules of inference to switch between those
two.

Now the representation of a sequent is as follows:

struct Sequent {
SEQUENT_TYPE type;
union {

Formula *leftF;
Structure *leftS;

};
union {

Formula *rightF;
Structure *rightS;

};
};

In this representation we can theoretically set both the left and the right side to
a formula, however in our implementation this will never be the case.

Now that we can represent sequents we will explain how the inference rules
are represented. An inference rule has a name, a LATEX name, a conclusion and
a (possibly empty) list of premisses. It is implemented as follows:

struct Rule {
char *name;
char *latexName;
Sequent *conclusion;
int numPremisses;
Sequent **premisses;

};

Now for each inference rule there must be an instance of this structure. In order to
represent the conclusion and premisses in such a way that there can be wildcard
matches, a fourth type is added to the formula and structure representations.
With this type, match, only a single character is stored and it is a representation
for a wildcard match, used for unification. If the same character is used both in
the premisse and in the conclusion, those formulas or structures will be unified.
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Let us for example look at the following rule of inference:

A · � ·B → P
A�B → P

�L

This will be represented as:

new Rule("(/) L", "\\oslash L",
new Sequent(

new Formula(new Formula(’A’), OSLASH, new Formula(’B’)),
new Structure(’P’)

),
new Sequent(

new Structure(new Structure(new Formula(’A’)), OSLASH,
new Structure(new Formula(’B’))),

new Structure(’P’)
));

Careful readers might have noticed that we used certain constructors to in-
stantiate the structs. In the explanation of the representation these have been
omitted for clarity, but for convenient use of the representations these have been
declared in the structs. The constructors are not only used for shorter and
better-readable code, but also make sure that we only use the representations in
the intended way, by means of one of the constructors.

The last representation is those of derivations. It is implemented as follows:

struct Derivation {
Rule *rule;
Sequent *conclusion;
int numPremisses;
Derivation **premisses;

};

9.2 Search procedure

In this section the search procedure for finding derivations for the given sequent
will be explained. The global search strategy is a top-down strategy that starts
from the target sequent (the top) and tries to apply the inference rules in order
to end in axioms (the bottom). Note that in our representation of the derivations
these are turned upside-down, as we write the target sequent at the bottom and
the axioms at the top.

The base of the search procedure is iterative deepening. In iterative deepening
the search space, organized as a DAG (Directed Acyclic Graph), is searched
step by step with increasing depth until a derivation has been found. The depth
is measured as the maximum number of derivation steps between one of the
axioms and the target sequent. So, the procedure starts by trying depth 1, which
will only succeed if the target sequent is an axiom. If it doesn’t succeed it will
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continue with depth 2, where it will try to apply any rule on the target sequent
and continue on the premisses with depth 1. This procedure continues until a
derivation has been found.

With this procedure, the depth of a derivation is measured as the maximum
depth from the conclusion to one of the axioms. Another way of measuring depth
could be to count all steps in the derivation, which is more interesting from a
theoretical point of view. However, from an implementational point of view this
is more complex as it requires another loop inside the iterative deepening process
to divide the total number of steps between the premisses.

The procedure can be summarized in pseudocode as follows:

find_derivation(sequent):
derivation = null;
depth = 1;
do {

derivation = find_derivation_step(sequent, depth);
depth++;

} while(derivation == null);
return derivation;

find_derivation_step(sequent, depth):
if(depth == 0) {

return null;
}
foreach(rule in rules) {

if(rule.match(sequent)) {
premisses = rule.premisses(sequent);
pderivations = [];
foreach(premisse in premisses) {

derivation = find_derivation_step(premisse, depth-1);
if(derivation != null) {

pderivations.add(derivation);
}

}
if(pderivations.length == premisses.length) {

return new derivation(rule, sequent, pderivations);
}

}
}
return null;

Again careful readers might have noticed that in this case the searchspace is
not organized as a DAG but as a tree, where multiple nodes in the tree could
represent the same sequent. In this way it will happend that the same sequent will
appear in multiple positions in the tree, and will therefore be handled multiple
times. For (huge) efficiency improvements we will have to organize our search
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space as a DAG (for NL, in (de Groote, 1999), the change from a tree to a DAG
even moves it from EXPTIME to PTIME). In this way, for each depth any possible
sequent is handled at most once.

This is accomplished by keeping track of all sequents that have been tried
so far, along with their (possible) derivations and meta-information about the
depth at which this sequent was tried. This information is stored in a hashmap,
with the sequent as key and the following struct as value:

struct HashmapItem {
int depth;
Derivarion *derivation;

};

In the find derivation step function we can now check whether the given
sequent was already tried. If a derivation is already present we can return this
derivation, and if the depth is higher than the current depth we can safely return
null, as we will not find a derivation of the given depth, otherwise it would
have been found when this sequent was tried before. The find derivation step
function is changed as follows:

find_derivation_step(sequent, depth):
if(hashmap[sequent] != null) {

if(hashmap[sequent].derivation != null) {
return hashmap[sequent].derivation;

} else if(hashmap[sequent].depth > depth) {
return null;

} else {
hashmap[sequent].depth = depth;

}
} else {

hashmap[sequent] = new HashmapItem(depth, null);
}
if(depth == 0) {

...
if(pderivations.length == premisses.length) {

hashmap[sequent].derivation =
new derivation(rule, sequent, pderivations);

return hashmap[sequent].derivation;
}

}
}
return null;

Apart from the increase in speed that this optimization provides us, there is
another interesting property that comes with this change. For non-derivable se-
quents we would like to know that these are non-derivable, so the theorem prover
should stop at a certain point and indicate that they are non-derivable. If we use



34

the approach without the hashmap then we will also search through redundant
derivations, i.e. derivations where there is a sequent X → P at a certain point
in the derivation, and then after a few (residuation or dual residuation) steps we
have X → P again.

With the introduction of the hashmap these redundant derivations will not
appear as we will not search further if we arrive at a sequent that has already
been found earlier in the derivation. Therefore, in the redundant-free search
with the hashmap, we will, for non-derivable sequents, at a certain point find
the maximum depth. An upperbound for this depth has already been given in
Lemma 3, but if we keep a boolean variable indicating whether we triggered
the if(depth == 0) statement for a certain start depth, we can stop when this
statement is not triggered anymore and the whole searchspace has been searched.
This way we have a finite, although still exponential time, method for deciding
whether the given sequent is derivable with the given inference rules.

9.3 Output

After the search procedure has been completed and a Derivation representa-
tion has been built by the search procedure, we would like to represent this proof
object in a useful way. One of the possibilities is translating to a LATEX repre-
sentation, after which it is parsed and showed as a PDF. With the proof.sty
package for LATEX this is a trivial step and we will not go into this further.

Other mappings, that are not included in the current implementation, could
be CPS translations or lexical semantics.

10 Further improvements

The implementation as discussed in the previous section is a usable theorem
prover for categorial grammars like NL and LG. However, in order to make it
faster and better some optimizations have been done which will be discussed
next.

10.1 Polarity check

From the rules of inference it can be seen that the polarity of a formula or struc-
ture is never changed. Hence, for every p ∈ V ar in the sequent we can directly
calculate its polarity and count all input and output occurrences. Because an
axiom has exactly one input and one output literal, we know that for every
derivable sequent for all p ∈ V ar : count(p•) = count(p◦). Thus, if this count is
not equal for any literal the sequent can never be derivable and we can therefore
return null immediately.

This polarity check will be done at the start of the derivation to make sure
that the input sequent has the correct polarity. The check will also be done after
every derivation step with more than 1 premisse, as the literals might not be
divided over the premisses in a balanced way, and therefore it can happen that
the polarity is not correct in some of the premisses.
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10.2 Structure sharing

After application of an inference rule during the search process, new formulas,
structures and sequents are constructed in memory. Although by means of the
hashmap the same sequent will not be handled again in the search procedure,
in memory there will be multiple instances of the same formulas, structures and
sequents. To make use of the memory in a more efficient way, we make use of
structure sharing.

In our implementation this means that we keep another hashmap with both
the key and value being the formula (or structure or sequent). Whenever a new
formula (structure, sequent) is created, the hashmap is checked to see whether
this formula (structure, sequent) already exists. If this is the case, the object
that is already present in the hashmap is taken, and the newly created one is
removed from memory again. If it was not present the new instance is added to
the hashmap.

10.3 Lexicon

The idea behind the theorem prover is to decide whether a sequent is derivable
or not, but in practice we would also like to use it in applications of LG. For
use in language models, the theorem prover has been built in such a way that a
user can create a lexicon with a single type for each word. An example lexicon:

alice :: np.
bob :: np.
walks :: np \ s.
sees :: (np \ s) / np.
everybody :: s / (np \ s).
teases :: (np \ s) / np.
someone :: (s (/) s) (\) np.

If this lexicon file is called lexicon.txt, the theorem prover can be called as
follows:

./LGprover lexicon.txt "alice teases someone" s

We can replace every word in the input sentence by the type from the lexicon,
but because LG is non-associative we have to add brackets to this sentence first.
The brackets will associate to the right by default, so in this case this means that
this is parsed as "(alice (teases someone))". Now the sequent that belongs
to this input is:

np︸︷︷︸
alice

· ⊗ ·(((np\s)/np)︸ ︷︷ ︸
teases

· ⊗ · ((s� s) ; np)︸ ︷︷ ︸
someone

)→ s

In order to accomplish this is a full parser for formulas has been written. This
parser is used both for the lexicon and for the given sentence and target type,
to construct the target sequent that is given to the theorem proving function.

The parsing starts with a tokenizer that takes a string as input and returns
a list of strings (tokens) as output. The tokenizer works as follows:
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specialTokens = {"::", "(*)", "(/)", "(\)", "(+)", ".",
"/", "1", "0", "\", "(", ")"};

tokenize(string):
tokens = []
while(string.length > 0) {

// remove whitespace from the beginning
string = trim(string);

// Try to match one of the special tokens
found = false;
foreach(specialToken in specialTokens) {

if(startsWith(string, specialToken)) {
tokens.add(specialToken);
string = string.substring(specialToken.length);
found = true;
break;

}
}
if(found) {

continue;
}

// Try to match the longest literal string
i = 0;
while(isLiteralChar(string[i])) {

i++;
}
tokens.add(string.substring(0, i));
string = string.substring(i);

}
return tokens;

The tokenizer will now return a list of tokens (provided that the input was
formatted in the correct way), and from this we can easily create a formula by
recursively going over the list of tokens. Every time an opening bracket is found
in the list the function is called recursively to parse the part in the brackets,
and if a formula is followed by a binary connective the function is also called
recursively to parse the righthand side. From this we automatically have implicit
right associativity if brackets are not added to the input.

10.4 Derivational and spurious ambiguity

Until now the objective of the theorem prover has been: given a sequent, decide
whether it is derivable or not in LG. However, for linguistic applications we
would like to have not only this question answered, but also the question: how
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many (essentially) different derivations do there exist for the given sequent.
Therefore, we would like to adapt the theorem prover in such a way that it returns
not only the shortest derivation, but also all essentially different derivations.

Let us first define what we mean by essentially different. We distinguish
between 2 types of ambiguity:

– Spurious ambiguity : This is the type of ambiguity where there are multiple
derivations for the same sequent that are different in the rules that are
applied, but are the same from a proof-term point of view, like the λ̄µµ̃
calculus.
For example if there is a derivation Γ , one can easily create another deriva-
tion which is almost the same as Γ , but add two r steps somewhere in the
middle of the derivation. Because the first r step can be reversed in the sec-
onds step, this is a valid derivation, but from the proof-term point of view
it is exactly the same.

– Derivational ambiguity : In derivational ambiguity there exist multiple deriva-
tions for the given sequent, that are essentially different also from the proof-
term point of view. This can for example be the case for ambiguous sentences
like ”everybody teases someone”, where different derivations can really rep-
resent different readings of the input sentence.

Now the question remains: in the derivation, how can we distinguish between
spurious and derivational ambiguity? We can answer this question as follows:

Two derivations are considered essentially different if the order of application
of the logical rules is different, where the logical rules are {⊗R, /L, \L,⊕L,�R,;R}.
For the λ̄µµ̃ calculus this will return redundant derivations, but it will always
find all possible λ̄µµ̃ terms.3 Hence, for the λ̄µµ̃ calculus this will give some false
positives, but it will never have false negatives. We believe that this is also the
case for most other interpretations of LG.

In the implementation of the theorem prover this means that a lot needs to
be changed. First of all the derivation procedure should always search the whole
search space in order to find all derivations. Furthermore, the find derivation
and find derivation step functions need to return a list of derivations. The
Derivation representation should contain a list that indicates in which order
the logical rules where applied on the sequents. This is done by indexing all
logical connectives before the search procedure starts, and then at application
of a logical rule store on which logical connective this rule applied. In this way,
all essentially different derivations can be identified and returned.

11 Conclusion and future work

This theorem prover is currently at the level where it can be very useful, espe-
cially for smaller sequents like the ones in the linguistic applications. It is flexible
3 At first it seemed that axiom linking could be used for this, but a counter-example

is the sequent (a� (np; a)) · ⊗ · (((np\s)/np) · ⊗ · (b� (np; b)))→ s which has at
least two λ̄µµ̃ terms with the same axiom linking.
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and can easily be adapted to work with other derivation rules like the Grishin
class I interactions. One could easily translate the Derivation representation to
other representations like a Prolog or Haskell representation to work with other
code.

Still, this is far from the most efficient implementation of a theorem prover
for LG. There has been a lot of research after theorem provers in general, and
there are a lot of improvements that could be done. We will discuss some of
them below.

11.1 Top-down vs bottom-up search

The top-down approach has been chosen for this theorem prover, and of course
another approach would be to do it bottom-up. It is not know whether this will
be faster or slower, but it is also possible to combine the 2 approaches (Fuchs,
1998). This is a totally different approach that did not fit in the timeframe of
this thesis, but it is an interesting approach to the general problem of theorem
proving.

11.2 Rule compilation

The current representation of the inference rules provides a flexible framework
in which new rules can easily be added. However the price that has to be paid for
this flexibility is efficiency, as this implementation of the inference rules creates
extra work during the search process. A possible solution for this could be to
do some kind of preprocessing on the inference rules, so that the parsing of the
flexible implementation has to be done only once.

In the current approach, for every sequent in the search process we try to
apply all rules. There are however 3 types of sequents (formula left, formula
right and structural) and any rule matches on only one of these 3 types. A
simple improvement would be to divide the rules in 3 groups, one for each of the
sequent types. Then whenever all rules that apply on a certain sequent have to
be found, only the appropriate list of inference rules has to be considered.

11.3 Focussed proof search

A whole different approach for searching the search space is the approach of
focussed proof search (Andreoli, 2002). The idea of focussed proof search is that
multiple steps are done in parallel if possible, thereby restricting the search space
and removing some spurious ambiguity. For example if we have the sequent
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(A⊗B) · ⊗ · (C ⊗D)→ E, we can have the following two derivations:

(A · ⊗ ·B) · ⊗ · (C · ⊗ ·D)→ E

C · ⊗ ·D → (A · ⊗ ·B) · \ · E
r

C ⊗D → (A · ⊗ ·B) · \ · E ⊗L

(A · ⊗ ·B) · ⊗ · (C ⊗D)→ E
r

A · ⊗ ·B → E · / · (C ⊗D)
r

A⊗B → E · / · (C ⊗D)
⊗L

(A⊗B) · ⊗ · (C ⊗D)→ E
r

(A · ⊗ ·B) · ⊗ · (C · ⊗ ·D)→ E

A · ⊗ ·B → E · / · (C · ⊗ ·D)
r

A⊗B → E · / · (C · ⊗ ·D)
⊗L

(A⊗B) · ⊗ · (C · ⊗ ·D)→ E
r

C · ⊗ ·D → (A⊗B) · \ · E
r

C ⊗D → (A⊗B) · \ · E ⊗L

(A⊗B) · ⊗ · (C ⊗D)→ E
r

In focussed proof search the two ⊗L rule are done in parallel, and for this part
of the derivation there will only be 1 possible derivation.

11.4 Lexical ambiguity

In the current implementation every word in the lexicon can have exactly 1
type. However, in natural language words often can have multiple functions in
a sentence. Therefore it would be useful for a theorem prover to support lexical
ambiguity, but unfortunately this will add another layer of complexity. If the
input sentence consists of n words, and every word has exactly 2 types assigned
to it, there are 2n possible sequents that can be constructed for this sentence,
and in this implementation all these sequents have to be considered.

11.5 Parsing vs Recognition

While the current implementation can do recognition, it does not yet do parsing.
In recognition the input is a phrase (a bracketed string) which can easily be
translated to a sequent of LG, but in parsing the input is a sentence, a string
without any bracketing. For working with natural language the theorem prover
obviously needs to do the parsing, but unfortunately the best known solution
for this (for LG) is to try all possible bracketings, which is again an exponential
time procedure.
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